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ABSTRACT 
The  number  of conjugacy classes of a given size (not 1) in a p-group is 
divisible by p - 1. We s tudy groups in which the  number  of classes of 
minimal  size is exactly p - 1, and chara~terise metabel ian groups and 
groups of maximal  class with this property. 

In this paper  all groups are non-abelian finite p-groups. We star t  with some 

simple observations on the sizes and number of conjugacy classes in such groups. 

Recall tha t  if G is a finite p-group, and pb is the size of the conjugacy class of 

x E G, we term b the b r e a d t h  of x, denoted b(x). The b r e a d t h  b(G) of G 
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is the maximal breadth of its elements. It is easy to see that  the number of 

(non-identity) classes of a given breadth is divisible by p - 1. It is then a natural  

task to investigate the groups in which this number is exactly p - 1. In case the 

given breadth is b(G), this question was addressed in [Mc2], where it is shown 

tha t  if G, of order pn, has p - 1 classes of size b = b(G), then cl(G) >_ 3, b _> 4, 

and n < b 2 q- b. We remark that  the last inequality can be improved slightly, 

to n _< b 2, by choosing, in the notation of the proof of Theorem 1 of [Mc2], 

the elements bl, ...,b~ outside a maximal subgroup containing C(a),  hence of 

non-maximal breadth. Macdonald also gives some examples of such groups, and 

further examples are provided by the groups in [VW]. It  is worth noting that  in 

all these examples we have p -- 2. 

In the present paper  our main interest is in the non-central classes of minimal 

breadth.  We refer to such classes as m i n i m a l  classes.  We first show that  there 

are always some minimal classes which are contained in Z2 (G). Then we consider 

the groups which contain just p - 1 minimal classes, and characterise metabelian 

groups with this property. These turn out to be closely related to groups of 

maximal  class, hence our title. More precisely, these groups are C F - g r o u p s ,  

i.e. groups G of class at least three in which all lower central factors G J G i + I  

except the first one have order p, and obey some further restrictions (see Theorem 

12). On the way we obtain characterisations of CF metabelian groups, and of 

metabel ian groups of maximal class (see Corollary 8 and Proposition 10). 

Notation: Let [G[ -- p~, let 1 < psi < . . .  be the sizes of the conjugacy classes 

of G, and write s = Sl. Write Z = Z(G),  [Z[ = p~, and assume that  G contains 

ui classes of size psi. Write u = ul.  

1. C o n j u g a c y  c lasses  

PROPOSITION 1: 

(1) For each i we have p - 1 [ ui and pZ [ uipS~. 

(2) Either  pS = pZ, and u --- p -  1 (mod p(p - 1)), or p8 < pZ, and u - 

0 (mod p ( p -  1)). 

Proof: (1) Let p~ be the exponent of G. If  (p, j )  = 1, then the map x -~ x j 

induces a permutat ion of the classes of G, and thus the group of residues prime 

to p~, of order p e - l ( p  _ 1), acts as a permutat ion group on the set of classes of 

G. If the class of x is invariant under the above permutation, then x is conjugate 

to x J, which is possible only if j _ 1 (rood p), and then the order of j in the 

group of residues is a power of p. It follows that  the orbit of each class has size 
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divisible by p - l, and the same holds for the set of classes of a fixed size, which 

is a union of orbits. 

The other divisibility claim follows from the fact that the set of elements of 

breadth pS~ has cardinality u~p s~ and is a union of cosets of Z(G). 

(2) The class equation of G is 

pn = pZ + upS + u2pS2 + . . .  

which implies that  pS 1 pZ. Dividing by pS we see that p l pZ-S + u, yielding our 

claim. | 

Passing now to minimal classes, we first note the following obvious facts: pS is 

the minimal index of proper centralisers in G, in other words, the minimal index 

of subgroups H such that Z(H) is not contained in Z(G). The minimal classes 

consist exactly of the elements in the centres of such subgroups which are not in 

Z(G). 

This characterisation of the minimal size is analogous to the following charac- 

terisation of the minimal degree of non-linear irreducible characters (see [M3]): 

the minimal degree is the minimal index of a subgroup H such that H' • G', 

and the minimal characters are the characters of G that are induced from linear 

characters of such subgroups H which cannot be extended to linear characters of 

G. In [M3] it is also shown that the relevant subgroups of minimal index are nor- 

mal. The corresponding claim, that the centralisers of minimal index are normal, 

is not true. Thus, let p be odd, and let G = (x, y) with relations x p = y P  • 1 

and all commutators of weight 4 trivial. Then IGI = p5  [Z(G)I = IG31 = p2 and 

]Z2(G)I = ]G'I = p3. All non-central elements have centralisers of order p3, but 

the only normal centraliser is Z2 (G). Note the following: 

A maximal centraliser C is normal, if and only if it is the centraliser o] a 

non-central element of Z2(G). 

Indeed, if x E Z2(G), then C(x) > G', so C(x),~ G. Conversely, if C ~ G, then 

Z(C) ~ G, and Z(C) contains Z(G) properly, therefore there exists an element 

x e Z(C) ~ (Z2(G) "- Z(G)), and the maximality implies C = C(x). 

Note that  this does not mean that if C(x),~G, then x E Z2(G). Some properties 

of elements with normal centralisers are discussed in [M2]. 

THEOREM 2: Let G be a non-abelian p-group. Then some of the minimal classes 

of G are contained in Z2 ( G); equivalently, some centralisers of maximal order are 

normal. Moreover, if x is an element of minimal breadth, there exists an element 
I 

w of minimal breadth in Z2(G) of the form [x, y, ..., y], for some y. 
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Proof: Let x be  an element of a minimal  class, and write C = C(x) ,  so I G : 

CI _ _ p s  I f p S - = p ,  t h e n C , ~ G ,  so we assume tha t  s > 1. L e t y  E N ( C ) - C  

be such tha t  yP E C. Writ ing [x, y; n] for [x, y, y, ..., y], where y occurs n t imes,  

let k be min imal  such tha t  [x, y; k] -- 1. Then  k > 1. Now x E Z(C) ~ N(C),  so 

Ix, y; k - 1] E Z(C), and C([z, y; k - 1]) contains bo th  C and y. The  max ima l i ty  

of C implies t ha t  [x, y; k - 1] e Z(G). Write z = [x, y; k - 2]. Then  [z, y] 7 ~ 1, so 

z ~ Z(G). But  z �9 Z ( C ) ,  so z belongs to a minimal  class. Moreover [z, y] �9 Z ( G ) ,  

therefore  (z, y) is of class 2, and yP E C = C(z) ,  implying [z, y]V = 1. Wri t ing 

N = ([z, y]) and H = G/N, it follows tha t  in H the conjugaey class of  zN  has 

size pS-1, and tha t  this class is a minimal  one in H .  By induction,  there exists 

an e lement  w such tha t  wN �9 Z2(H) ,  and wN lies in a minimal  class of H .  Then  

the  class of wN has  size pS-1, so the  class of w in G has size a t  mos t  pS, and  by 

min imal i ty  t ha t  size is exact ly  p~. Let v �9 G. Then  IT, v]N �9 Z(H), so the  class 

of [w, v] in G is contained in [w, v]N, and has size a t  most  p. Since p~ > p, we 

have [w, v] �9 Z(G) and w �9 Z2(G).  

To prove the s t a t ement  abou t  the shape of w, let again first s = 1, then  

Z(C) <~ G, therefore all e lements  of the form Ix, y, ..., y] are in Z(C), where we 

choose again  y ~ C. Suppose  t ha t  x �9 Zi(G) \ Zi-I(G), for some i > 2. Then ,  

since x is not  central  (mod Z~-2(G)), it follows tha t  [x, y] �9 Z~_I(G) - Z~_2(G), 

and [x, y] is also of b read th  1. Continuing in the same way, we see tha t  Ix, y; n] �9 

Z2(G) - Z(G), for some n. For s > 1, w has the required form by induction.  

I 

This  theorem enables us to give another  character isa t ion of the min imal  

breadth ,  which is dual  to the character isat ion of minimal  degree. 

PROPOSITION 3: 

(1) Any normal subgroup of G of order at most pS is central. 

(2) p~ is the minimal order of a normal subgroup N such that Z(G/N)  

Z(G)/N.  

Proof: Let N , ~ G  and I N ] <__ pS Then  the elements  of N have less t han  

p~ conjugates ,  so they  are central.  Moreover, if x �9 Z(G m o d  N ) ,  then  all 

conjugates  of x are contained in xN, so the number  of conjugates  is at  mos t  INI. 

Thus,  if IN] < pS, then  x is central.  On the other  hand,  let z be  an e lement  of 

Z2(G) which belongs to a minimal  class. Then  N := [x, G] is a normal  subgroup  

of order  pS and x E Z(G m o d  N) ,  so Z(G mod N) ~ Z(G). I 

PROPOSITION 4: 

(1) If x E Z2(G) has minimal breadth, then x p �9 Z(G). 



Vol. 110, 1 9 9 9  MINIMAL CLASSES AND MAXIMAL CLASS IN p-GROUPS 97 

(2) Let N1 and N2 be two normal subgroups of order pS such that Zi :=  

Z(G rood Ni) ~ Z(G). Then Z1 N Z2 = Z(G). 
(3) Similarly, if C1 and Cz are two maximal centralisers, and Z~ = Z(Ci), then 

Zx n z2 = Z(G).  m 

Proof: (1) Let  x be an element of Z2(G) tha t  lies in a min imal  class, let C = 

C(x), and let y ~ C, bu t  yV E C. Then  (x ,y)  is of class 2, therefore Ix p,y] = 
[x, yP] = 1. Thus  C(x p) contains C(x) properly, so x p is central.  

(2) Let  x E Z1 N Z2. Then  [x, G] < N1 N N2, so x has less than  p~ conjugates ,  

and is central.  

A similar  p roof  establishes (3). | 

PROPOSITION 5: Let G be a group orctass c having exactly p -  1 minimal classes. 
Then: 

(1) Z2(G) is elementary abetian, [Z2(G) : Z(G)[  = p, and the minimal classes 
are  the classes lying in Z2(G) - Z(G). These classes are cosets of Z(G). 

(2) I r x  ~ z 3 ( c )  - z 2 ( c ) ,  then the class of z is xZ2(C).  

(3) c > 4. Moreover, Go-1 = Z2(G) and Gc = Z(G). 

Proof: I t  is clear f rom Proposi t ion  1 tha t  u = p - 1 is possible only if p~ = pZ. 

Now if x E Z2(G) - Z(G), then  the conjugacy class of  x is contained in xZ(G), 
so its size is a t  most  p~. Thus  this class must  have size pZ, and it coincides wi th  

the coset xZ(G). Since different cosets of Z(G) in Z2(G) yield different classes, 

there  are a t  mos t  p -  1 such cosets, and [Z2(G) : Z(G)[  = p. Moreover,  these 

cosets are all the  min imal  classes of G. Therefore  if x e Z3(G) - Z2(G),  then  the  

class of x has size a t  least ps+l. But  this class is contained in xZ2(G), of size 

p~+l,  so the  class of x is xZ2(G). 

Let t ing  again  x C Z2(G) - Z(G), and z C Z(G), we have z = [x, u], for some 

u, hence z p = [xP,u] = 1. Thus  Z(G) is e lementary  abelian,  while Z2(G) -- 

(x, Z(G)} is abelian.  Suppose  tha t  Z2(G) is not  elementary.  Then  there  exists  

a max ima l  subgroup  W of Z(G) such tha t  Z2(G)/W is cyclic of order  p2. T h e  

fact t ha t  e lements  of Z2(G) are conjugate  to all e lements  in their  coset of Z(G) 
shows tha t  Z(G/W)  = Z(G)/W. Thus  Z2(G/W) = Z2(G)/W is cyclic, which 

implies t h a t  G / W  is dihedral,  quaternion,  or semidihedral  [Hu, III.7.7]. Since 

the  classes of  G / W  have size at  least the size of the  corresponding class in G, 

divided by p~ - l ,  we see t ha t  G / W  also has jus t  p - 1 min imal  classes (of size p). 

This  is incompat ib le  wi th  the  s t ruc ture  of G/W.  Thus  Z2(G) is e lementary.  

If  G = Z2(G),  then  G is abelian. Suppose el(G) = 3. For each x e Z3(G) - 

Z2(G),  the  e lements  of Z2(G) are c o m m u t a t o r s  of x. Thus  G' = Z2(G).  T h e n  
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the fact that  the class of x is xZ2 (G) means that G is a so-called Camina group, 

and such groups cannot have IZ2(G): Z(G)] = p [Mcl]. Therefore cl(C) > 4. 

There exists an element x E Go-2 < Z3(G), such that x r Z2(G). Then 

(2) shows that  Z2(G) = [x, G] _< G~-I. Similarly, changing x to a non-central 

element in Z2(G) shows that  Z(C)  < Gc. I 

2. M e t a b e l i a n  g r o u p s  

In this section we derive some properties of metabelian p-groups, which will then 

be used for characterising such groups with just p - 1 minimal classes. We write 

Zi and Z for Zi(G) and Z(G).  

PROPOSITION 6: Let G be a metabelian group o[ class at least 4 in which 

[Z2(G) : Z(G)[ ---p. Then the elements o fZ~(G) \ Z(G) have breadth 1. 

Proof." Let G have class c. Since c _> 4, we have Go-2 _< Z3MG p, but Gc-2 ~ Z2, 

so we can choose an element x E Z3 ;'1 G t - Z2, and there exists an element y 

such that  Ix, y] ~ Z. Then Ix, y] generates Z2(G) (mod Z(G)) ,  and all elements 

of Z2(G) - Z(G) are of the form [x,y]iz, O < i < p , z  C Z(G),  so all these 

elements have the same centraliser. Let C = C(x mod Z(G)); then ]G : C I -- 

p, and our claim will be proved by showing that C([x,y]) = C. This is an 

immediate corollary of the three subgroups lemma, according to which [x, G, C] _< 

[C, x, a l [ c ,  C, x] = 1. 

PROPOSITION 7: Let G be a metabelian group of class c > 2 such that 

[Z2(G) f3 G'[ = p2. Then Z~(G) M G' = Go+l-i ,  for 1 <_ i < c - 1, and G is 

a CF-group. 

Proof." The claims are obvious for i = 1, 2, and we proceed by induction. Ass- 

uming the claims valid for i and all smaller indices, we divide by Zi-2(G) ;3 G ~, 

and replace G by the factor group. That  means that we have only to show our 

claims for i = 3. 

Let x E Z 3 Q G ' - Z 2 ,  and let y be an element such that  Ix, y] ~ Z. The proof of 

the previous proposition shows that  C := C(x mod Z) = C([x, y]) = C(Z2 MG'), 

and that  this subgroup has index p. Therefore G = (C, y). If also u E Z3 MG'-Z2,  

then similarly C(u mod Z) = C. Also, [u, y] = [x, y]~z, for some integer e and 

some central element z. Thus [ux -~, y] E Z and [ux -e, G] = [ux -~, C(y)] < Z, 
i Z i so ux -r E Z2. This shows that  Z3MG / 2ClG is cyclic, generated by x(Z2QG') .  

But [x,y] p E Z, implying [xP, y] E Z and x p E Z2, so that  ]Z3 ClG' : Z2 MG'] = p. 

Since G~+l-i  _< Z~ M G' and IGr _> pi _> IZi M G'[, the two subgroups are 

equal, and the calculation of the indices that was just made shows that  G is a 
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CF-group. | 

COROLLARY 8: A metabelian group G of  class c > 2 is a CF-group i f  and only 

if  [Z2(G) CI G'[ = p2. 

COROLLARY 9: Let G be a metabelian group of class c > 2 in which ]Z2nD[ = p2, 

where D = C(G').  Then G is a CF-group, and Zi Cl D = Zi N G ~, for I < i < c - 1 .  

Proo~ G is CF by the previous proposition, and an argument similar to the 

proof of that  proposition shows that  ]Zi fq D : Zi-1 fq D] = p. | 

I t  is of interest to note also the following result, a sort of dual to the last one, 

though it is not needed for the rest of the paper. 

PROPOSITION 10: Let G be a two generator metabelian group of  class c, and 

suppose that tGi : Gi+21 = p2, for some i < c -  1. Then tGk : Gk+lt = P, for all 

i < k < c. In particular, i f  G/G4 is of maximal class, so is G. 

This is proved (though not stated) by the proof of Proposition 7.d in [Br]. 

3. M i n i m a l  c la s se s  

In this section we need more terminology. Let G be a CF-group. We write 

G1 = C(G2/G4).  Then ]G : Gll = p. If G1 is non-abelian, we say that  G has 

d e g r e e  o f  c o m m u t a t i v i t y  k, if [Gi, Gj] <_ Gi+j+k, for all indices such that  

i + j + k < c + 1, but for at least one such pair i, j we have [Gi, Gj] ~ Gi+j+k+l.  

(If G1 is abelian, we say that  G has degree of commutat ivi ty c - 2.) 

LEMMA 11: Let G beametabel ian  CF-group ofclassc > 3. IY[Gj, Gi] < Gi+l+k, 

for some 2 < i < c - 2, k <_ c - i, then [G1, Gi] <_ Gi+l+k for all j > 1. 

Proof: First, 

[a,+,, all  -- a,  a,] <_ [a,, a,,  alia, a,l -= [al, a] <_ 

so induction yields the claim for j > i. Next, 

[G1, Gi-1, G] <__ [G, G1, ei_l][Gi-1, G, G1]. 

If i - 1 _> 2, then [G, G1,Gi-1] = 1, while if i - 1 = 1, then [G, G1,Gi_I] = 

[G2, G1]. In either case we have [G1, Gi-1, G] < [Gi, G1] <2 Gi+l+k <_ Zc-i-k, so 

/G1, Gi- l l  <__ G' f3 Zc+l - i - k  = Gi+k, and reverse induction yields the claim also 

for j < i. | 
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THEOREM 12: A metabelian group G of class c has just p - 1 minimal classes i f  

and only i f  G is a CF-group of degree of commutativity 1 satisfying c >__ 4 and 

C ( a ' )  n zc_~ = C'.  

Proo~ First let G have p - 1 minimal classes. Combining Propositions 5 and 

6 shows that  c > 4 and that ]Z2(G)[ = p2, and then Corollary 9 shows that  G 

is a CF-group and that C(G t) A Zc-1 = G ~. By the corollary to [B1, Theorem 

2.10], G has positive degree of commutativity, say k. If k > 1, then [Gc-2, G1] _< 

Gc-2+l+k = 1, so all elements of Go-2 have at most p conjugates, yielding at 

least p2 _ 1 minimal classes. Thus k = 1. 

Now let G be a CF-group of class at least 4, degree of commutativity 1, and 

satisfying C(G ~) N Zc-1 = G ~. We wish to show that all elements of breadth 

1 lie in Z2(G). Let b(x) = 1, and at first assume also that x 6 G'. Then x E 

Gi \ G i + l ,  for some i, and then Gi = (x)Gi+l. Assume that i _< c - 2. By the 

lemma, [G1, Gi] ~ Gi+3, so by assumption [G1, Gi] = Gi+2. Thus G1 does not 

centralise x, so since b(x) - 1, we have [G1, x] = [G, x]. Then Gi+l = [G, Gi] = 

[G,(x)Gi+l] <_ [G,x][G, Gi+I] = [Gl,x]Gi+2 = Gi+2, a contradiction. Thus 

x 6 Go- l ,  as needed. Now suppose that x ~ G'. Because x has breadth 1, it 

centralises G ', which implies that [x, y, z] = [x, z, y] for any two elements y, z, and 

in particular C(x) < C([x, y]). Then the commutators [x, y] also have breadth 1, 

and lie in Z2, by what was proved already. Then x ff Z3NC(G') ,  so x E G ~, and 

we are done. | 

Recall that  an E C F - g r o u p  is a CF-group in which G/G' is elementary. 

COROLLARY 13: A metabelian ECF-group G with just p - 1 minimal classes is 

of class p + 1 at most. In paxticular, if  G is of maximal class, its order is at most 
p p +  2 . 

Proof: By [B1, 3.10], G has degree of commutatitivity at least c - p. 

We now discuss groups of maximal class that are not necessarily metabelian. 

These will provide us with several examples of groups with just p - 1 minimal 

classes, in particular they show that  there are such groups for all orders up to 

pp+2. Most of these examples are not metabelian. 

If G is of maximal class and order pn, then G1 = C(Gi/Gi+2) for 2 < i < n - 3 

[Hu, III.14.6]. If also G1 = C(G,~_2), then G has positive degree of commutativ- 

ity, and is termed n o n - e x c e p t i o n a l ,  otherwise it is excep t iona l .  Exceptional 

groups exist if and only if n is even and satisfies 5 < n ~ p + 1 [Hu, III.14.6, 

III.14.24]. 
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Next, let G be any group of order pn, and write n = 2m + e, e = 0, 1. 

Then a formula of P. Hall states that  the number of conjugacy classes of G 

is 1 + e(p - 1) + m(p 2 - 1) + r(p - 1)(p 2 - 1), for some non-negative integer r, 

called the a b u n d a n c e  of G. [Hu, V.15.2, or M1]. If r = 0, then G is of maximal  

class, n _< p + 1 if p > 11, and n < p + 2 always ([Po] and [FS]). Such groups 

exist for all orders pn in the above ranges, according to the constructions in [Pa, 

KLG, Yo, Ro]. 

PROPOSITION 14: Let G be of maximal class and order p~. Then G contains 

exactly p -  1 minimal classes i f  and only i f  [G1, Gn-3] 7 ~ 1. This includes aI1 

exceptional groups, and also all groups of  abundance O, and implies n <__ 2p - 3. 

Proo~ Let b(x) = 1, and let C = C(x).  Then x E Z(C)<~G. Thus Z(C)  

is a normal subgroup of order at least p2, and therefore contains Gn-2, and 

C = C(G,~_2). It follows that  G has p - 1 minimal classes if and only if Z(C)  = 

Gn-2.  If this is not the case, then Z(C)  >>_ G~-3. This cannot happen if G is 

exceptional, because then C does not centralise even G ~ - 3 / G ~ - I .  If G is non- 

exceptional, then C = G1, so Z(C)  = G,~-2 is equivalent to [G1,G~-3] # 1, 

and the latter inequality holds also for exceptional groups. Moreover, if G has 

positive degree of commutat ivi ty  k, that  inequality shows that  k -- 1, and [Fe] 

shows that  n < 2 p -  3. 

Groups of abundance 0 are characterised in [VF, (2.1)], which shows that  these 

groups are non-exceptional and satisfy [G1, G~-3] = Gn-1. This concludes the 

proof. | 
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