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ABSTRACT
The number of conjugacy classes of a given size (not 1) in a p-group is
divisible by p — 1. We study groups in which the number of classes of
minimal size is exactly p — 1, and characterise metabelian groups and
groups of maximal class with this property.

In this paper all groups are non-abelian finite p-groups. We start with some
simple observations on the sizes and number of conjugacy classes in such groups.
Recall that if G is a finite p-group, and p® is the size of the conjugacy class of
z € G, we term b the breadth of z, denoted b(z). The breadth b(G) of G
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is the maximal breadth of its elements. It is easy to see that the number of
(non-identity) classes of a given breadth is divisible by p — 1. It is then a natural
task to investigate the groups in which this number is exactly p — 1. In case the
given breadth is b(G), this question was addressed in [Mc2], where it is shown
that if G, of order p™, has p — 1 classes of size b = b(G), then cl(G) > 3,b > 4,
and n < b2 4+ b. We remark that the last inequality can be improved slightly,
to n < b?%, by choosing, in the notation of the proof of Theorem 1 of [Mc2],
the elements by, ..., b, outside a maximal subgroup containing C(a), hence of
non-maximal breadth. Macdonald also gives some examples of such groups, and
further examples are provided by the groups in [VW]. It is worth noting that in
all these examples we have p = 2.

In the present paper our main interest is in the non-central classes of minimal
breadth. We refer to such classes as minimal classes. We first show that there
are always some minimal classes which are contained in Z5(G). Then we consider
the groups which contain just p — 1 minimal classes, and characterise metabelian
groups with this property. These turn out to be closely related to groups of
maximal class, hence our title. More precisely, these groups are CF-groups,
i.e. groups G of class at least three in which all lower central factors G,;/G;41
except the first one have order p, and obey some further restrictions (see Theorem
12). On the way we obtain characterisations of CF metabelian groups, and of
metabelian groups of maximal class (see Corollary 8 and Proposition 10).

Notation: Let |G| = p™, let 1 < p** < --- be the sizes of the conjugacy classes
of G, and write s = s;. Write Z = Z(G),|Z| = p*, and assume that G contains
u; classes of size p*t. Write u = ;.

1. Conjugacy classes

PROPOSITION 1:
(1) For each i we have p—1 | u; and p* | u;p®.
(2) Either p* = p*, and u = p— 1 (mod p(p — 1)), or p* < p*, and u =
0 (mod p(p —1)).

Proof: (1) Let p® be the exponent of G. If (p,j) = 1, then the map £ — 27
induces a permutation of the classes of G, and thus the group of residues prime
to p¢, of order p*~!(p — 1), acts as a permutation group on the set of classes of
@G. If the class of z is invariant under the above permutation, then z is conjugate
to 27, which is possible only if j = 1 (mod p), and then the order of j in the
group of residues is a power of p. It follows that the orbit of each class has size
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divisible by p — 1, and the same holds for the set of classes of a fixed size, which
is a union of orbits.

The other divisibility claim follows from the fact that the set of elements of
breadth p% has cardinality u;p* and is a union of cosets of Z(G).

(2) The class equation of G is

P =p" tup® +ugp™ + -,

which implies that p® | p*. Dividing by p°, we see that p | p*~° 4 u, yielding our
claim. [ |

Passing now to minimal classes, we first note the following obvious facts: p® is
the minimal index of proper centralisers in G, in other words, the minimal index
of subgroups H such that Z(H) is not contained in Z(G). The minimal classes
consist exactly of the elements in the centres of such subgroups which are not in
Z(G).

This characterisation of the minimal size is analogous to the following charac-
terisation of the minimal degree of non-linear irreducible characters (see [M3)):
the minimal degree is the minimal indezx of a subgroup H such that H' # G,
and the minimal characters are the characters of G that are induced from linear
characters of such subgroups H which cannot be extended to linear characters of
G. In [M3] it is also shown that the relevant subgroups of minimal index are nor-
mal. The corresponding claim, that the centralisers of minimal index are normal,
is not true. Thus, let p be odd, and let G = (z,y) with relations 2? = y? = 1
and all commutators of weight 4 trivial. Then |G| = p’,|Z(G)| = |G3| = p? and
|Z2(G)| = |G'| = p3. All non-central elements have centralisers of order p®, but
the only normal centraliser is Z3(G). Note the following;:

A mazimal centraliser C is normal, if and only if it is the centraliser of a
non-central element of Zo(G).

Indeed, if z € Z2(G), then C(z) > G', so C(z) «G. Conversely, if C <G, then
Z(C) 4G, and Z(C) contains Z(G) properly, therefore there exists an element
z € Z(C) N (Z2(G) ~ Z(G)), and the maximality implies C = C{z).

Note that this does not mean that if C(z)<G, then z € Z5(G). Some properties
of elements with normal centralisers are discussed in [M2].

THEOREM 2: Let G be a non-abelian p-group. Then some of the minimal classes
of G are contained in Z3(G); equivalently, some centralisers of maximal order are
normal. Moreover, if x is an element of minimal breadth, there exists an element
w of minimal breadth in Z,(G) of the form [z,y, ...,y], for some y.
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Proof: Let z be an element of a minimal class, and write C = C(z), so |G :
C| =p*. If p° = p, then C 4G, so we assume that s > 1. Let y € N(C) - C
be such that y? € C. Writing [z,y;n] for [z,¥,y,...,y], where y occurs n times,
let k£ be minimal such that [z,y;k] = 1. Then k > 1. Now z € Z(C) « N(C), so
[z,y;k — 1] € Z(C), and C([z,y; k — 1]) contains both C and y. The maximality
of C implies that [z,y; k — 1] € Z(G). Write z = [z,y;k — 2]. Then [z,y] # 1, so
z ¢ Z(G). But z € Z(C), so z belongs to a minimal class. Moreover (z,y] € Z(G),
therefore (z,y) is of class 2, and y? € C = C(z), implying [z,y? = 1. Writing
N = ([z,y]) and H = G/N, it follows that in H the conjugacy class of zN has
size p*~!, and that this class is a minimal one in H. By induction, there exists
an element w such that wN € Z3(H), and wN lies in a minimal class of H. Then
the class of wN has size p*~!, so the class of w in G has size at most p*, and by
minimality that size is exactly p°. Let v € G. Then [w,v]N € Z(H), so the class
of [w,v] in G is contained in [w,v]N, and has size at most p. Since p* > p, we
have [w,v] € Z(G) and w € Z3(G).

To prove the statement about the shape of w, let again first s = 1, then
Z{C) < G, therefore all elements of the form [z,y,...,%] are in Z(C), where we
choose again y ¢ C. Suppose that z € Z;(G) ™ Z;_1{G), for some i > 2. Then,
since z is not central (mod Z;_5(G)), it follows that [z,y] € Z;_1(G) — Z;_2(G),
and [z, y] is also of breadth 1. Continuing in the same way, we see that [z,y;n] €
Z2(G) — Z(G), for some n. For s > 1, w has the required form by induction.
| |

This theorem enables us to give another characterisation of the minimal
breadth, which is dual to the characterisation of minimal degree.

PROPOSITION 3:
(1) Any normal subgroup of G of order at most p°® is central.

(2) p® is the minimal order of a normal subgroup N such that Z(G/N) #
Z(G)/N.

Proof: Let N «G and |N| < p°. Then the elements of N have less than
p° conjugates, so they are central. Moreover, if z € Z(G mod N), then all
conjugates of = are contained in N, so the number of conjugates is at most |N|.
Thus, if |[N| < p°, then z is central. On the other hand, let z be an element of
Z»(G) which belongs to a minimal class. Then N := [z, G] is a normal subgroup
of order p* and z € Z(G mod N), so Z(G mod N) # Z(G). |

PROPOSITION 4:
(1) If x € Z5(G) has minimal breadth, then zP € Z(G).
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(2) Let N1 and N2 be two normal subgroups of order p® such that Z; =
Z(G mod N;) # Z(G). Then Z; N Zy = Z(G).

(3) Similarly, if C1 and Cy are two maximal centralisers, and Z; = Z(C;), then
ZyNZy = Z(G). |

Proof: (1) Let z be an element of Z3(G) that lies in a minimal class, let C =
C(z), and let y ¢ C, but y? € C. Then (z,y) is of class 2, therefore [zP,y] =
[z,y?] = 1. Thus C(zP) contains C(z) properly, so z? is central.
(2) Let z € Z; N Z. Then [z,G] < N1 N Na, so z has less than p°® conjugates,
and is central.
A similar proof establishes (3). ]

PROPOSITION 5: Let G be a group of class ¢ having exactly p—1 minimal classes.
Then:
(1} Z3(G) is elementary abelian, |Z2(G) : Z(G)| = p, and the minimal classes
are the classes lying in Z53(G) — Z(G). These classes are cosets of Z(G).
(2) Ifz € Z3(G) — Z2(G), then the class of x is ©Z2(G).
(3) ¢ > 4. Moreover, G.—1 = Z5(G) and G, = Z(G).

Proof: 1t is clear from Proposition 1 that u = p — 1 is possible only if p® = p*.
Now if z € Z3(G) — Z(G), then the conjugacy class of ¢ is contained in zZ(G),
so its size is at most p?. Thus this class must have size p*, and it coincides with
the coset zZ(G). Since different cosets of Z(G) in Z3(G) yield different classes,
there are at most p — 1 such cosets, and |Z3(G) : Z(G)| = p. Moreover, these
cosets are all the minimal classes of G. Therefore if z € Z3(G) — Z2(G), then the
class of z has size at least p**!l. But this class is contained in zZ5(G), of size
p*T1 50 the class of z is £Z,(G).

Letting again z € Z3(G) — Z(G), and z € Z(G), we have z = [z,u], for some
u, hence 2? = [2P,u] = 1. Thus Z(G) is elementary abelian, while Z,(G) =
{(z, Z{G)) is abelian. Suppose that Z2{G) is not elementary. Then there exists
a maximal subgroup W of Z(G) such that Z,(G)/W is cyclic of order p?. The
fact that elements of Z3(G) are conjugate to all elements in their coset of Z(G)
shows that Z(G/W) = Z(G)/W. Thus Zy(G/W) = Z»(G)/W is cyclic, which
implies that G/W is dihedral, quaternion, or semidihedral [Hu, 111.7.7]. Since
the classes of G/W have size at least the size of the corresponding class in G,
divided by p*~!, we see that G/W also has just p — 1 minimal classes (of size D).
This is incompatible with the structure of G/W. Thus Z3(G) is elementary.

If G = Z(G), then G is abelian. Suppose cl(G) = 3. For each z € Z3(G) —
Z5(G), the elements of Z5(G) are commutators of z. Thus G’ = Z(G). Then
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the fact that the class of = is £Z2(G) means that G is a so-called Camina group,
and such groups cannot have |Z2(G) : Z(G)| = p [Mcl]. Therefore cl(G) > 4.

There exists an element z € G.—o < Z3(G), such that £ ¢ Z3(G). Then
(2) shows that Z3(G) = [z,G] < G._;. Similarly, changing z to a non-central
element in Z3(G) shows that Z(G) < G.. |

2. Metabelian groups

In this section we derive some properties of metabelian p-groups, which will then

be vsed for characterising such groups with just p — 1 minimal classes. We write
Z; and Z for Z;(G) and Z(G).

PROPOSITION 6: Let G be a metabelian group of class at least 4 in which
|Z2(G) : Z(G)| = p. Then the elements of Z3(G) ™~ Z(G) have breadth 1.

Proof: Let G have class ¢. Since ¢ > 4, we have G._3 < Z3NG', but G._2 £ Z,,
so we can choose an element z € Z3 NG’ — Z;, and there exists an element y
such that [z,y] ¢ Z. Then [z, y] generates Z2(G) (mod Z(G)), and all elements
of Z2(G) — Z(G) are of the form [z,y]'2,0 < i < p,z € Z(G), so all these
elements have the same centraliser. Let C = C(z mod Z(G)); then |G : C| =
p, and our claim will be proved by showing that C([z,y]) = C. This is an
immediate corollary of the three subgroups lemma, according to which [z, G, C] <
C,z,GlG,C,z]) = 1. |

PROPOSITION 7: Let G be a metabelian group of class ¢ > 2 such that
|Z2(GYNG'| = p?. Then Z,(G)NG' = Gey1-4, for 1 < i< c—1, and G is
a CF-group. '

Proof: The claims are obvious for ¢ = 1,2, and we proceed by induction. Ass-
uming the claims valid for i and all smaller indices, we divide by Z; _2(G) NG,
and replace G by the factor group. That means that we have only to show our
claims for 7 = 3.

Let £ € Z3NG’' — Z3, and let y be an element such that {z,y] ¢ Z. The proof of
the previous proposition shows that C' := C(z mod Z) = C([z,y]) = C(Z2NG"),
and that this subgroup has index p. Therefore G = (C,y). Ifalso u € Z3NG'— Za,
then similarly C(u mod Z) = C. Also, [u,y] = [z,y]2, for some integer e and
some central element 2. Thus [uz™¢,y] € Z and [uz~%,G] = [uz™¢,C(y)] < Z,
so uz~¢ € Zy. This shows that ZsNG'/Z, NG’ is cyclic, generated by z(Z2NG").
But [z,y]P € Z, implying [z?,y] € Z and zP € Z,, so that |Z3NG' : ZNG'| =p.

Since Got1-; < Z; NG’ and |Gey1-i] > p* > |Z; NG|, the two subgroups are
equal, and the calculation of the indices that was just made shows that G is a
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CF-group. 1

COROLLARY 8: A metabelian group G of class ¢ > 2 is a CF-group if and only
if|Zo(G) N G'| = p?.

COROLLARY 9: Let G be a metabelian group of class ¢ > 2 in which | ZeND| = p?,
where D = C(G'). Then G is a CF-group, and Z,ND = Z,NG', for1 <i < c—1.

Proof: @G is CF by the previous proposition, and an argument similar to the
proof of that proposition shows that |Z; "D : Z;,_1 N D| = p. |

It is of interest to note also the following result, a sort of dual to the last one,
though it is not needed for the rest of the paper.

PROPOSITION 10: Let G be a two generator metabelian group of class ¢, and
suppose that |G; : Gio| = p?, for some i < ¢ — 1. Then |Gy, : Gry1| = p, for all
i < k < c. In particular, if G/G4 is of maximal class, so is G.

This is proved (though not stated) by the proof of Proposition 7.d in [Br].

3. Minimal classes

In this section we need more terminology. Let G be a CF-group. We write
G1 = C(G2/G,). Then |G : Gy| = p. If G, is non-abelian, we say that G has
degree of commutativity k, if [G;,G;] < Giyjtk, for all indices such that
i+j+k < c+1, but for at least one such pair 4, j we have [G;, G;] £ Gitjtkt1-
(If G is abelian, we say that G has degree of commutativity ¢ — 2.)

LEMMA 11: Let G be a metabelian CF-group of class¢ > 3. If [G1,G;) < Giy14k,
for some 2 < i< c—2,k <c—1, then [G1,G;| < Gjpi4k forall j > 1.

Proof: First,
[Gis1,G1] =[G, G, G1] < [G1, G4, GG, G1,Gi] = [G1,Gi,G] < Giygrs,
so induction yields the claim for j > i. Next,
[G1,Gi-1,G) < |G, G1,Gi1])|Gi-1, G, Gy).

If i —1 > 2, then [G, Gl,Gi-—I] =1, while if i — 1 = 1, then [G, Gl,Gi—l] =
[Gz, Gl]- In either case we have [Gl, Gi_1, G] < [G,;,Gl] < Gii4k L Zo—ik, SO
IG1,Gi—1) £ G' N Z p1—i—x = Giys, and reverse induction yields the claim also
for j <1. |
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THEOREM 12: A metabelian group G of class ¢ has just p — 1 minimal classes if
and only if G is a CF-group of degree of commutativity 1 satisfying ¢ > 4 and
c(GhYnz,. =@

Proof: First let G have p — 1 minimal classes. Combining Propositions 5 and
6 shows that ¢ > 4 and that |Z2(G)| = p?, and then Corollary 9 shows that G
is a CF-group and that C(G’) N Z..1 = G’. By the corollary to [Bl, Theorem
2.10], G has positive degree of commutativity, say k. If k£ > 1, then [G._2,G4] <
Ge—-241+k = 1, so all elements of G._2 have at most p conjugates, yielding at
least p?> — 1 minimal classes. Thus k = 1.

Now let G be a CF-group of class at least 4, degree of commutativity 1, and
satisfying C(G’') N Z.—; = G’. We wish to show that all elements of breadth
1 lie in Z5(G). Let b{z) = 1, and at first assume also that z € G’. Then z €
G; ™ Giy1, for some 4, and then G; = (z)G;41. Assume that i < ¢ — 2. By the
lemma, [G1,G;] £ Gits, so by assumption [G1,G;i] = Giyo. Thus G does not
centralise x, so since b(z) = 1, we have [G1,z] = [G,z]. Then G411 = [G,G;] =
[G,(2)Giy1] < [G,z][G,Gi41] = [G1,2]Giy2 = Giya, a contradiction. Thus
z € G_y, as needed. Now suppose that £ ¢ G'. Because z has breadth 1, it
centralises G’, which implies that [z, y, 2] = [z, 2, y] for any two elements y, z, and
in particular C(z) < C([z,y]). Then the commutators [z,y] also have breadth 1,
and lie in Z,, by what was proved already. Then z € Z3 N C(G’), so z € G’, and
we are done. |

Recall that an ECF-group is a CF-group in which G/G’ is elementary.

COROLLARY 13: A metabelian ECF-group G with just p — 1 minimal classes is
of class p+1 at most. In particular, if G is of maximal class, its order is at most

pp+2_

Proof: By [Bl, 3.10], G has degree of commutatitivity at least c - p.

We now discuss groups of maximal class that are not necessarily metabelian.
These will provide us with several examples of groups with just p — 1 minimal
classes, in particular they show that there are such groups for all orders up to
pPT2. Most of these examples are not metabelian.

If G is of maximal class and order p”, then G; = C(G;/Giq2) for 2<i<n-3
[Hu, 111.14.6]. If also Gy = C(Gyr-2), then G has positive degree of commutativ-
ity, and is termed non-exceptional, otherwise it is exceptional. Exceptional
groups exist if and only if n is even and satisfies 5 < n < p+1 [Hu, 111.14.6,
111.14.24].
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Next, let G be any group of order p”, and write n = 2m + e, e = 0,1.
Then a formula of P. Hall states that the number of conjugacy classes of G
is 1 +e(p—1) +m(p? — 1) +r(p— 1)(p? — 1), for some non-negative integer r,
called the abundance of G. [Hu, V.15.2, or M1]. If 7 = 0, then G is of maximal
class, n < p+1if p > 11, and n < p+ 2 always ([Po] and [FS]). Such groups
exist for all orders p™ in the above ranges, according to the constructions in [Pa,
KLG, Yo, Ro}.

PrOPOSITION 14: Let G be of maximal class and order p"®. Then G contains
exactly p — 1 minimal classes if and only if |G1,Gp-3] # 1. This includes all
exceptional groups, and also all groups of abundance 0, and implies n < 2p — 3.

Proof: Let b(z) = 1, and let C = C(z). Then z € Z(C) «G. Thus Z(C)
is a normal subgroup of order at least p?, and therefore contains G,_5, and
C = C(Grn—2). It follows that G has p — 1 minimal classes if and only if Z(C) =
G _o. If this is not the case, then Z(C) > G,_3. This cannot happen if G is
exceptional, because then C does not centralise even G,,_3/G,,_1. If G is non-
exceptional, then C = Gy, so Z(C) = G,_3 is equivalent to [G1,Gn—3] # 1,
and the latter inequality holds also for exceptional groups. Moreover, if G has
positive degree of commutativity k, that inequality shows that kK = 1, and [Fe]
shows that n < 2p— 3.

Groups of abundance 0 are characterised in [VF, (2.1)], which shows that these
groups are non-exceptional and satisfy [Gy,Gpn-3] = Gp—y. This concludes the
proof. ]
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